Markov Chain I

July 28, 2022

Example 1a

Toss an unfair coin $\mathbb{P}(\text{Head}) = p$ for N times. What's the fraction of time for observing heads out of all outcomes?

Example 1b

Now we have two unfair coins, each is biased to either head or tail.

Coin 1: $\mathbb{P}(\text{Head}) = p$; Coin 2: $\mathbb{P}(\text{Head}) = 1 - p$.

If seeing head, then use coin 1 for next toss; if seeing tail, then use coin 2 for the next toss.

Toss N times, what's the fraction of time for observing heads out of all outcomes?

Markov Chain (Discrete Time Finite MC):

State Space:

At each time step n, the state is denoted by X_n . The collection of all possible value a state can take is called the state space $S = \{1, 2, ..., K\}$ for a finite number K.

Transition Probability:

$$P_{ij} = \mathbb{P}(X_{n+1} = j \mid X_n = i) \quad \forall i, j \in S$$

Markov Property

$$\mathbb{P}(X_{n+1} = j | X_n = i, X_{n-1} = i_{n-1}, \dots, X_0 = i_0)$$

$$= \mathbb{P}(X_{n+1} = j | X_n = i) = P_{ij}$$

Example 1b

Now we have two unfair coins, each is biased to either head or tail.

Coin 1: $\mathbb{P}(\text{Head}) = p$; Coin 2: $\mathbb{P}(\text{Head}) = 1 - p$.

If seeing head, then use coin 1 for next toss; if seeing tail, then use coin 2 for the next toss.

Toss N times, what's the fraction of time for observing heads out of all outcomes?

Example 2: Alice takes probability class.

Alice is either (1) up-to-date or (2) fall behind

$$P_{11} = 0.8, P_{12} = 0.2, P_{21} = 0.6 P_{22} = 0.4$$

Probability of being in state *j*, at time step *n*

Balance Equation

A distribution π is invariant for the transition probability P if it satisfies the balance equation

$$\pi P = \pi$$

Example 2: Alice takes probability class.

Alice is either (1) up-to-date or (2) fall behind. Find the stationary distribution.

$$P_{11} = 0.8, P_{12} = 0.2, P_{21} = 0.6 P_{22} = 0.4$$

Properties of Markov Chain

- Q1: Does an invariant distribution always exist? Q2: Is it unique?
- Q3: Does π_n approach an invariant distribution?

Properties of Markov Chain

Irreducibility

A Markov chain is irreducible if it can go from any state to any other state, possibly after many steps.

Properties of Markov Chain

(a)periodicity

for an irreducible Markov Chain defined on state space S with transition probability P.

Let

$$d(i) \coloneqq \gcd\{n \ge 1 | P^n(i,i) > 0\}$$

Then, d(i) has some value for all i, d(i) = d.

If d=1, MC is aperiodic If d>1, MC is periodic with period d.

Example 3a

$P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

Example 3b: Alice studies Markov Chain

Find the invariant distribution of Alice's study status.

Example 3c: Find the invariant distribution.

A(n) ______ Markov Chain with ______ is aperiodic.

Theorem for Markov Chain

1) If a Markov Chain is finite and irreducible:

2) If this Markov Chain is also aperiodic:

Example 1b. Tossing two unfair coins

One more example

 $P = \begin{bmatrix} 0 & 1 & 0 \\ 0.5 & 0 & 0.5 \\ 0 & 1 & 0 \end{bmatrix}$